Summer Workday Daily Mobile NOx and State Ranking

Kristen Stumpf, Jin-Sheng Lin, and Sonya Lewis-Cheatham, Virginia Department of Environmental Quality

MARAMA MOVES Workgroup conference call August 28, 2014

Summer Daily NOx (tons/day)

- Mobile a significant source sector
- Annual numbers (TPY) too coarse of a resolution
- Implication for summer ozone
- Parameter used in transportation conformity and mobile budgets

ApproachSummer Workday Daily NOx

- EPA 2011/2018 modeling files contain emissions by county & calendar date (month, day of month, and Julian day)
- Calendar dates were translated to corresponding day of the week (ex, Monday, Tuesday, etc.)

```
January 12, 2011  Wednesday

July 16, 2011 Saturday
```

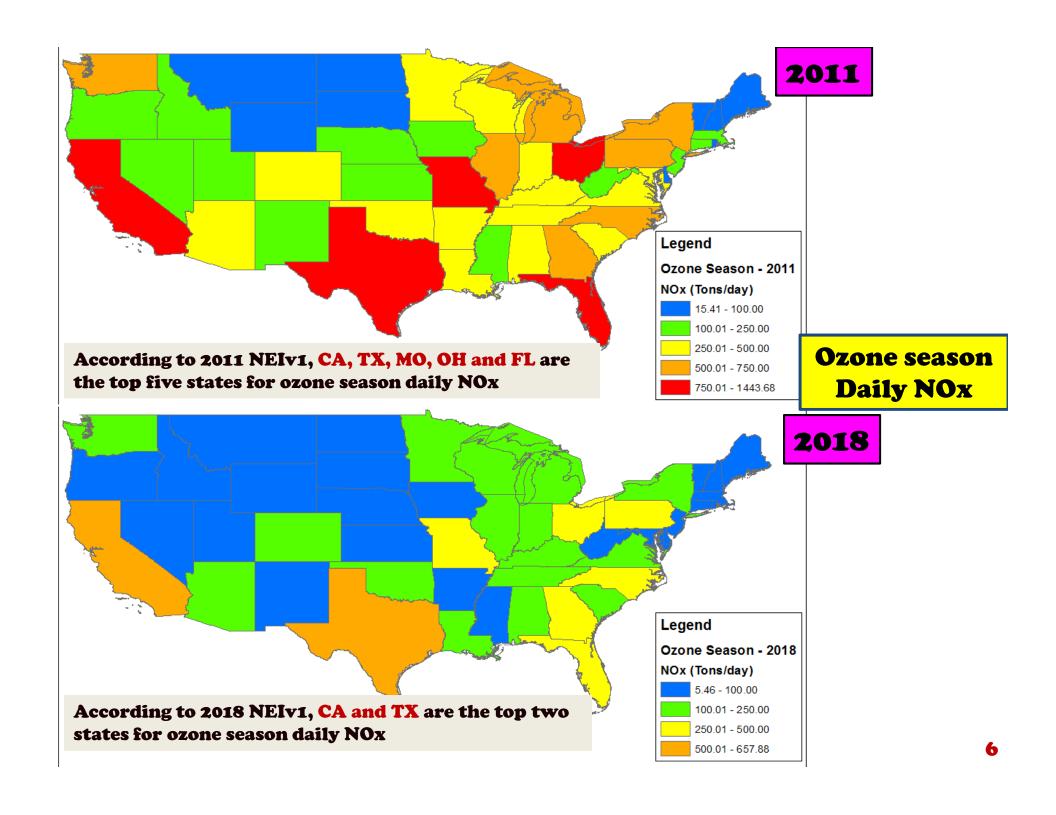
- Summarize workday emissions (Monday to Friday, excluding weekend) over a selected episode period
- Average total workday emissions by the number of workdays in the episode

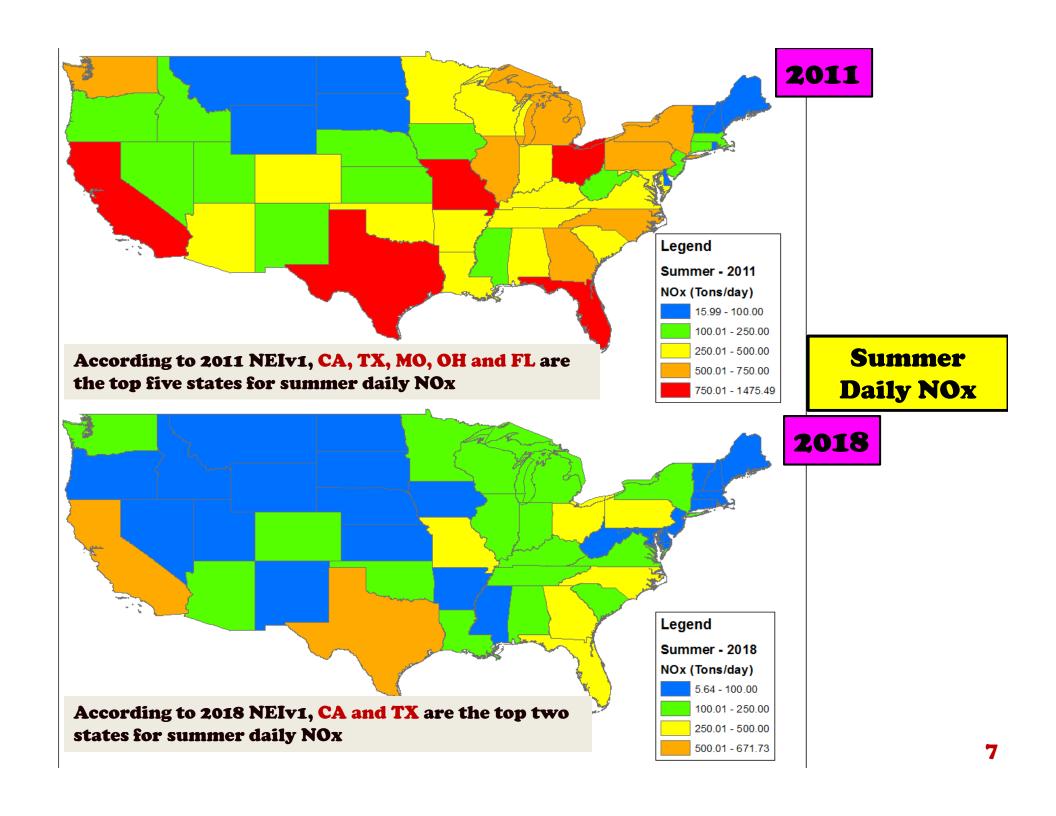
NOx in tons/day

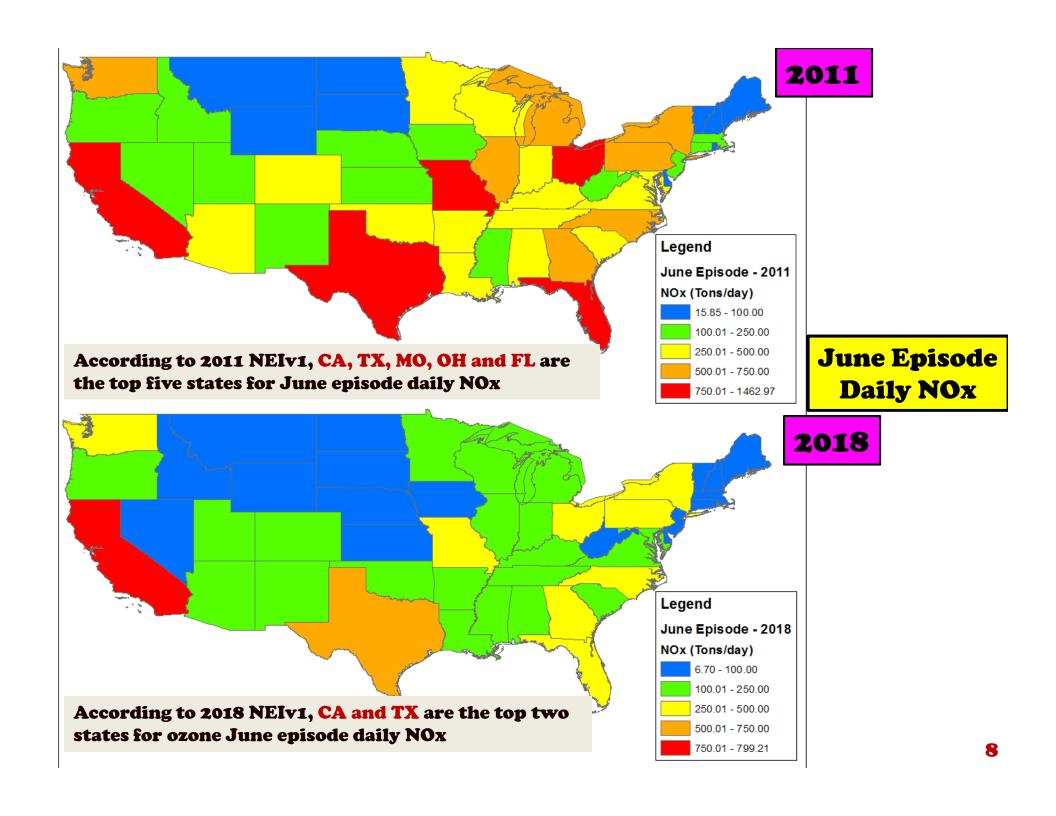
Summer Episodes Selected

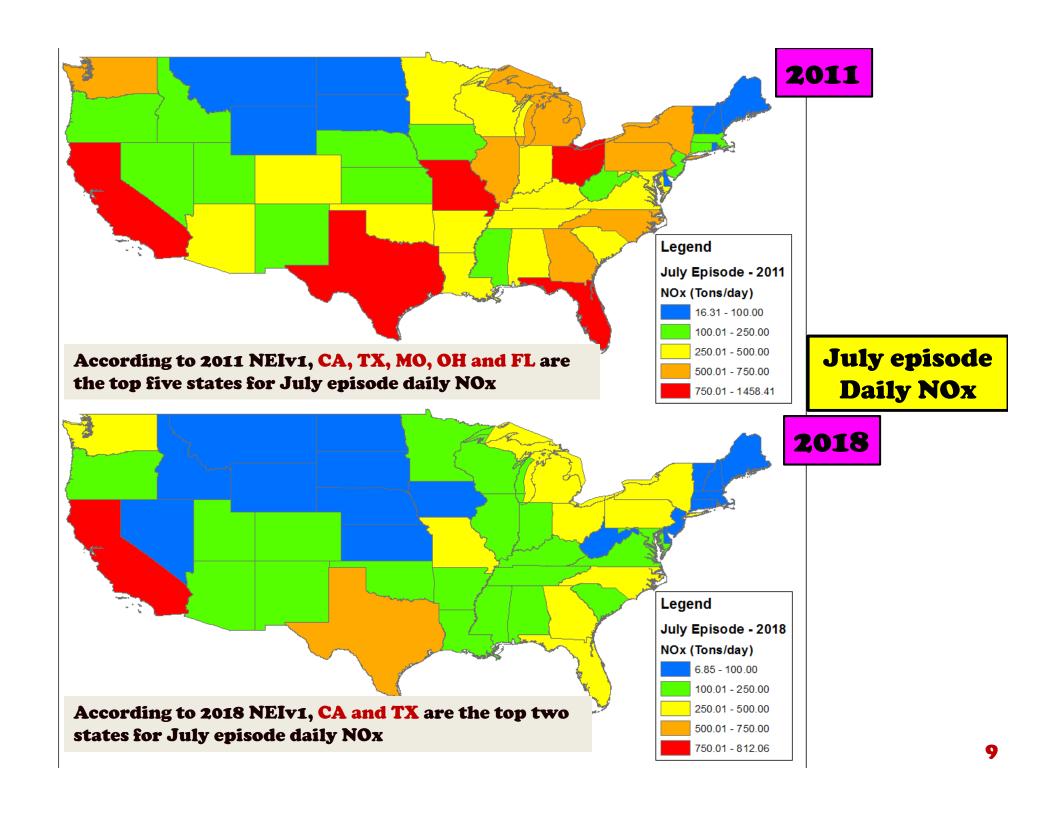
Period	Duration	# of days averaged	Notes
Ozone season	May, Jun, Jul, Aug, Sep	110 days	summer ozone, HEDD, mobile budgets
Summer months	Jul, Aug, Sep	66 days	peak summer/ozone season
June episode (NE)	June 6, 7, 8, 9	4 days	2011 bad air quality in NE
July episode (NE)	July 20, 21	2 days	2011 bad air quality in NE

Only weekday NOx were included in calculations (weekends were excluded). Daily NOx (tons/day) is an average over the number of days in the episode (i.e., 3rd column). Data were obtained from 2011-2018 NEI v1 platform posted by EPA.


Possible minor flaws:


- 1. NEI data was generated in GMT time scale. "True" workday emissions should be in local time (such as EST, PST). The approach will be a few hours (5 hours for EST) off due to time differences between GMT and local time.
- 2. Holidays (ex., July 4) were not excluded.


SMOKE-MOVES v3.1 cannot handle local time (such as EST) ← EPA please fix


Summer Daily NOx by State

Aggregated over state counties

State Ranking

(1) ranked by 2010 census

(May 27 presentation)

(2) ranked by 2011 VMT

(April 28 presentation)

Same rank: CA (1), TX (2), SC (24), UT (34), ID (39), ME (40), NH (41)

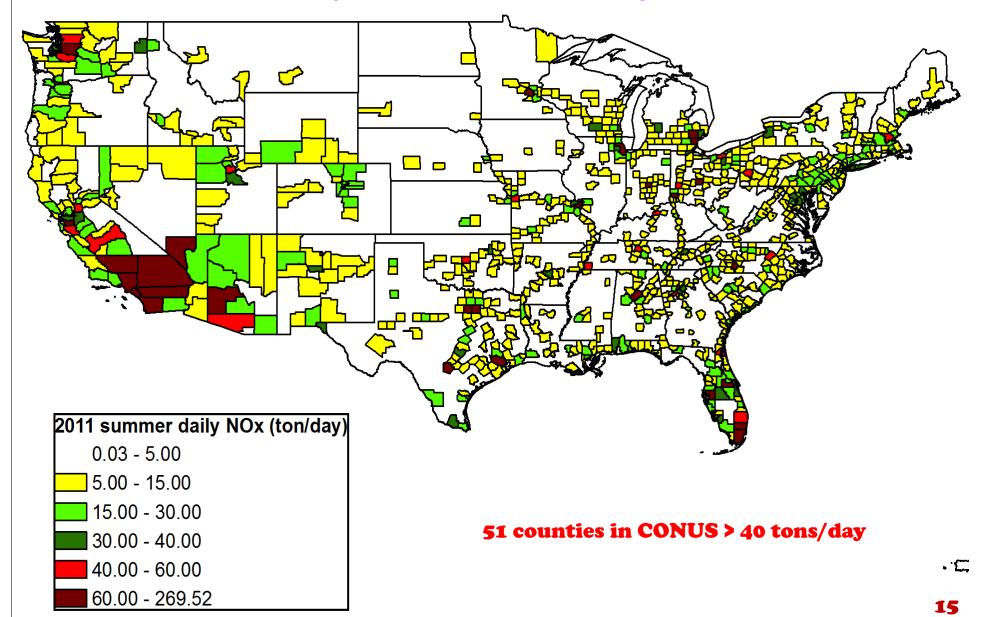
Wild swing in two rankings: AL, WA, MA, WY

Census data is in line with VPOP for passenger cars (May 27 presentation) Census data can be considered a surrogate for VPOP for passenger cars

ACTED BE A MED E VINE TO SECOND A SECON Ranked by 2011 VMT

(5) 2018 ozone daily NOx	\vdash				1
657.9 364.7 346.6 311.3 276.4 266.8 253.0 234.1 234.1 230.0 215.6 180.9	168.1 168.2 139.2 130.9	119.0 118.9 115.6 107.0	96.9 96.4 89.3 88.1 87.7	83.5 75.3 73.9 71.4 70.8 69.6 67.6	47.4 42.7 36.9 32.2 31.9 31.9 22.5 21.5 12.0 10.1
- 2 × 4 × 0 × 0 0 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	245 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2 2 2 2	28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	38 33 33 38	888444444444
S X Y S B S S A S M E I	A T A A M W Y	8 옷 물 용	AB OB TO MS	M S S S D M	S S S S S S S S S S S S S S S S S S S
(6) 2018 summer daily NO					
671.7 374.6 374.6 352.0 304.5 274.8 224.8 224.8 236.5 236.5 217.4 182.0	171.9 170.0 163.7 141.3 136.0 131.4	22.7 21.8 18.2 09.1	98.0 97.3 90.6 90.5 89.6	85.2 75.7 73.7 72.9 72.5 72.3 68.8	48.0 43.2 37.5 32.8 32.8 32.8 23.9 16.2 10.2 10.2 10.2
- 2 c 4 m 0 r 8 e 0 + 5 c 5	2 4 5 9 7 9 9 8	2 2 2 2	28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	32 32 33 34 36 36	28894444444448
A X L B M A D A S A M A M A L L	Z W W A A K	용었고양	AR MD UT OR MS	RS KS MA	S S S S S S S S S S S S S S S S S S S
(7) 2018 June episode dail	y NOx				
799.2 665.1 435.5 419.5 332.2 330.0 224.0 224.0 222.7 222.7	202.7 202.0 194.9 167.3 167.3 155.5	143.7 139.9 139.7 125.8	117.6 116.4 106.7 105.1 103.2	86.2 86.2 86.2 84.4 83.1 81.6 77.7	55.0 50.1 43.7 38.6 37.1 31.0 27.9 25.7 25.7 25.6 19.0 11.9
- 2 8 4 7 9 0 C C C C C C C C C C C C C C C C C C	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2	25 1 27 1 28 1 29 1	30 1 32 33 34 35 36	78 8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
TA WAY BOOK TX A MAN A M	Z M MZ AL X	SFAS	MD AR OR UT	NA RS	S A S S S S S S S S S S S S S S S S S S
(8) 2018 July episode daily	y NOx				
	3.9 3.9 3.0 3.0 3.0 3.0 3.0 3.0	5.3 4.7 7.4	6.9 6.6 7.9 6.7	72.7 38.7 96.9 96.6 13.9	6.8 6.8 6.8 6.8 6.8 6.8 6.8
812.1 663.1 434.8 424.4 381.2 309.4 303.7 300.8 272.0 272.0 272.0 253.6	15 198.5 16 190.4 17 165.3 18 155.0 19 153.4 20 149.6	21 145.3 22 144.3 23 137.4 24 129.2	25 116.9 26 116.6 27 107.9 28 106.7 29 103.1	11 88.7 12 86.9 13 86.6 14 86.4 15 83.9 16 81.4	37 56.7 38 50.2 39 44.1 40 39.1 41 37.1 42 31.6 43 27.5 44 25.9 45 25.8 46 18.9 47 13.8 49 6.8

General Summary on Daily NOx by State

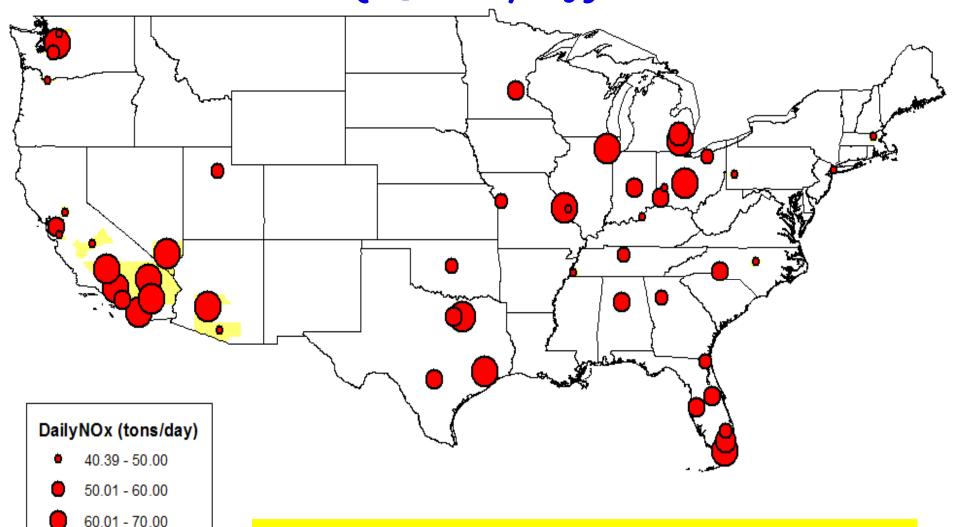

- Daily NOx are very similar, both in magnitude and in ranking, among all four summer episodes
- Ranking from 2011 to 2018 changes only slightly
- Meteorology does not make much difference to emissions or ranking
- CA, TX, MO, OH and FL are the top five states for daily NOx from mobile sources
- CA is projected in 2018 to replace TX as the top spot in daily NOx. What is the reason for this switch?

Summer Daily NOx by County

- ☐ Resolution at state level is too coarse
- ☐ MOVES modeling is conducted by county

2011 Summer Daily NOx by County

(July to September)



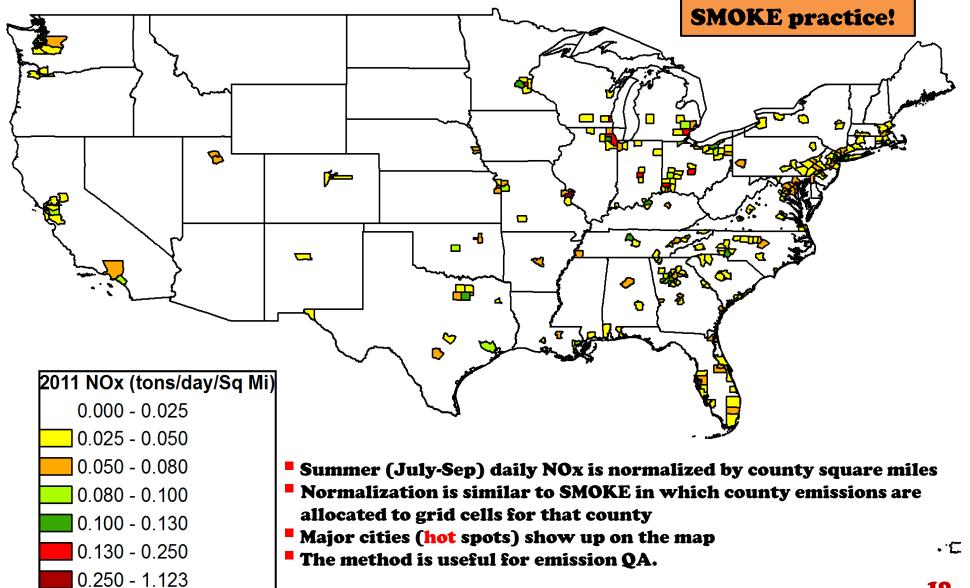
Highest Daily NOx by County

	111211626 1		a by country		NE
		(> 40 tons/d	ay)		
AL	01073-Jefferson			1	
AZ	04013-Maricopa	04019-Pima		2.	
CA	06001-Alameda	06019-Fresno	06029-Kern		
	06037-Los Angeles	06059-Orange	06065-Riverside		
	06067-Sacramento	06071-SanBernar	dino 06073-SanDiego		
	06085-SantaClara			10	a Se
FL	12011-Broward	12031-Duval	12057-Hillsborough		D
	12086-Miami-Dade	12095-Orange	12099-PalmBeach	6	TI ST
GA	13121-Fulton	_		1	2
IL	17031-Cook			1	<mark>40 tons/day</mark>
IN	18097-Marion			1	g
KY	21111-Jefferson			1	i.
MA	25017-Middlesex			1	- F
MI	26125-O akland	26163-Wayne		2	<mark>greater than</mark>
MN	27053-Hennepin			1	<u> </u>
MO	29095-Jackson	29189-St.Louis	29510-St.Louiscity	3	0.0
NV	32003-Clark			1	ije i
NY	36081 <i>-</i> Queens			1	Ē
NC	37119-Mecklenburg	37183-Wake		2,	<mark>counties</mark>
ОН	39035-Cuyahoga	39049-Franklin	39061-Hamilton		
	39113-Montgomery	•		4	Number of
OK	40109-Oklahoma			1	Pe
OR	41051-Multnomah			1	
PA	42003-Allegheny			1	ž
TN	47037-Davidson	47157-Shelby		2.	
TX	48029-Bexar	48113-Dallas	48201-Harris		
	4 8439-T arrant			4	
UT	49035-SaltLake			1	
WA	53033-King	53053-Pierce	53061-Snohomish	3	16

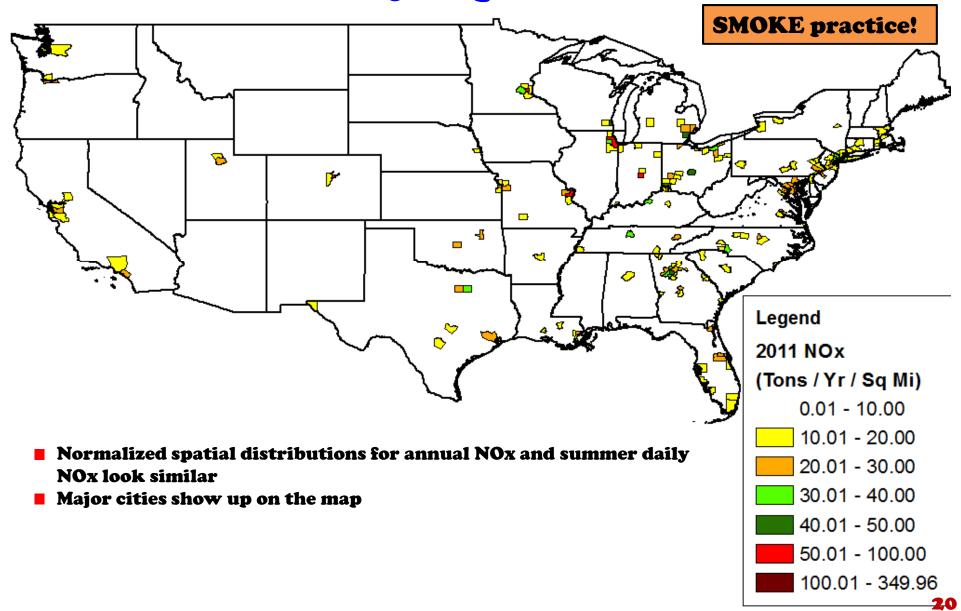
Highest Daily NOx by County

(> 40 tons/day)

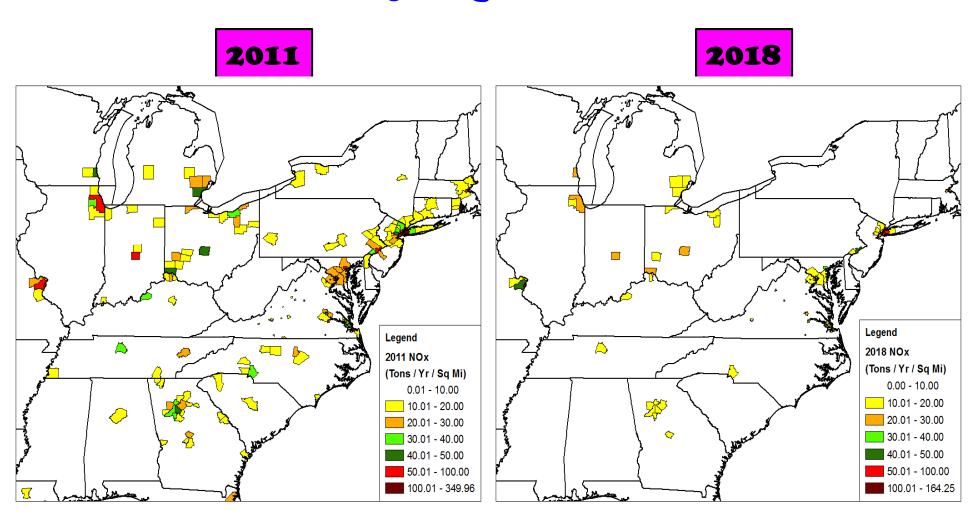
70.01 - 80.00


80.01 - 269.52

County-wise, highest daily NOx corresponds to major cities


NOx per County Square Miles

- ☐ Resolution at county level is still too coarse.
- ☐ "Normalized" emissions by land size
- ☐ County land size (or area) in square miles were obtained from 2010 census data


2011 Summer Daily NOx per **County Square Miles**

2011 Annual NOx per County Square Miles

Annual NOx per County Square Miles

2011 NOx County Hot Spots by County Square Miles

Top 15 hot spots

	Annual	Daily	
FIPS	(tons/year/sq mile)	(tons/day/sq mile)	CName
36061	349.9626	1.122862	New York County—New York
29510	237.2394	0.738439	St. Louis City—Missouri
36005	174.0538	0.556779	Bronx County—New York
36047	172.3985	0.551859	Kings County—New York
36081	117.0593	0.372167	Queens County—New York
06075	98.63251	0.327523	San Francisco County—California
29189	88.23918	0.274931	St. Louis County—Missouri
11001	81.38605	0.261847	District of Columbia—District of Columbia
42101	83.43138	0.259958	Philadelphia County—Pennsylvania
51630	67.90241	0.200973	Fredericksburg City—Virginia
24510	65.29381	0.198133	Baltimore City—Maryland
08031	58.82967	0.193828	Denver County—Colorado
25025	59.92275	0.176978	Suffolk County—Massachusetts
27123	59.10064	0.174807	Ramsey County—Minnesota
51520	52.69731	0.169730	Bristol City—Virginia

Ranking is based on summer daily NOx, but ranks by annual are similar

NY data in 2011NEI v1 was from MOVES defaults (not state-supplied)

Unlike county and state ranking, most hot spots are now in northeast states.

Overall Ranking Summary

- ☐ By state
- ☐ By county
- ☐ By county land size

Ranking Summary

-- According to EPA 2011 NEI v1 --

- Top 10 states in the nation:
 - CA, TX, FL, OH, MO, GA, NC, PA, NY, WA
- Northeast MARAMA states:
 - PA, NY, VA, MD, NJ, MA, CT, ME, NH, DE, VT, RI, DC
- Southeast SESARM states:
 - FL, GA, NC, TN, VA, AL, KY, SC, MS, WV
- Top 10 NOx by county (the highest NOx in tons/day):
 - Los Angles-CA (270), Maricopa-AZ (167), Cook-IL (159), Harris-TX (156), St. Louis-MO (140), King-WA (122), Clark-NV (106), San Bernardino-CA (105), Dallas-TX (99), Miami-Dade-FL (93)
- Top 15 hot spots by county square miles (from SMOKE perspective):

 NY (4), MO (2), CA (1), DC, PA (1), VA (2), MD (1), CO (1), MA (1), MN (1)
- Daily NOx (by county) for southeast states are higher than northeast states (stringent control programs such as CALEV in place? Or older vehicles in the SE? many possibilities)

Conclusions

- A methodology of calculating ozone season and summer workday daily emissions suitable for transportation conformity and mobile budget is presented
- Daily NOx from mobile sources shows consistent spatial patterns -- by state, by county, or by county land size -- concentrating on major metropolitan areas
- The study is limited by data quality of 2011/2018 NEI version1 (MOVES defaults instead of state-supplied)
- Method using emissions per county square miles can be useful for emissions QA

Acknowledgments

- The NEI-based summer daily NOx data (along with other pollutants) used in this study has been made available to the Emission Modeling Framework (EMF) hosted by MARAMA
- Thanks to Phyllis Jones and Carrie Pickett of NC DENR for pulling data from EMF